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Abstract. In this work a numerical methodology combining a finite element approach and CBS (Characteristic Based Splitting) 
method is used to simulate canopy flows non-homogeneous forests. The particular interest is to simulate the atmospheric fluid flow 
over complex relieves, or in a proximity of discontinuity of vegetative layer distribution (clearings or rivers). A turbulence model is 
used to describe the flow within the forest canopy. This model uses a first order closure approach, with a computation of the eddy 
viscosity by an algebraic model. The vegetative drag force effects are taken into account by means of a quadratic term. The 
computation of velocity statistics is performed using anisotropy estimative of the distribution of kinetic energy of turbulence. The 
implementation of the CBS algorithm for the turbulence model was performed in a 2D code that use triangular elements with an 
equal order of velocity and pressure interpolation. Results for homogeneous forest, forest edges and clearings are presented and 
compared in situ measurements. 
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1. Introduction 
 

The description of the atmospheric turbulent air flow within and above vegetative canopies has become an 
important research interest, which has been associated to comprehension and quantification of physicochemical and 
ecological processes in forests and plantations. The modeling of this kind of turbulent flow is inserted in a perspective 
of the advanced closuring of statistical turbulent moments in averaged fluid mechanics governing equations, and the use 
of the this models to simulate real and complex situation have to be associated to the properly numerical 
implementations. 

On the last decade a great interest for the numerical solutions of inhomogeneous canopy flow problems has arisen 
(Lee, 2000), involving, for instance, situations like flows through forest cut blocks (Wilson and Flesh, 1999) or over 
complex forested relieves (e. g Kobayashi et al., 1994, Ross et al., 2004 or Ross and Vosper, 2004). For this kind of 
problem, advanced turbulence models considering the vegetative canopy layers have been proposed, and its numerical 
implementation, using algorithms that can treat complex geometries, have to be employed. A real complex flow through 
and over forested relieves occurs in a domain with a bottom surface issued from the topography of geographic regional 
terrain database. Sometimes, great gradients of elevation are encountered, and over this relief the vegetation is often 
distributed non-uniformly, due to different structures of the vegetative layer and to the existence of clearings. 

The use of a detailed description of vegetative elements individually is impossible to be considered in this scale of 
analysis, and the modeling of the vegetative layer has to be represented in a sense of a local spatial averaging procedure. 
The actual approach for simulating canopy flows considers the averaging the flow variables within the forest layer, 
using a physical control volume of an order of some meters in the vertical direction and hundred of meters in the 
horizontal direction. On this scale, one can evaluate some features of the flow related to the local variations. It can 
allow the comprehension and quantification of heat and mass exchanges between the vegetation and the atmosphere. 

The turbulence models issued from this averaging approach have some distinct characteristics from the 
conventional models for free-flows, and the numerical methodologies have to be adapted to this new condition. 
Considering this averaging process for the fluid flow modeling, the closuring of the governing equations can either use 
second or first-order models. 

The present paper proposes a simple modeling approach based on first-order with algebraic eddy viscosity. An 
alternative approach to compute the length scale non-homogeneous canopy situations is explored. 

In a context of first-order turbulence closuring models (K-l or K-ε), it has already been shown that these simple 
models can accurately describe both the mean velocity and the kinetic energy profiles in homogeneous forest boundary 
layers (Katul et al., 2004; Pinnard and Wilson, 2001). 

In some non-homogeneous vegetation distribution, like in forest cutblocks for instance (Wilson and Flesh, 1999}, 
the numerical results show good agreement with the field data, taken into account some corrections of the internal 
parameters of the model. The low computational cost of the first-order models, in particular for 2D or 3D problems, is 
the great motivation of the development of this class of models. 
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The aim of the present paper is to present an alternative zero-equation model for canopy flows. A canopy flow 
model was implemented in a finite element code using the Characteristic-Based Splitting approach, with P1-P1 
triangular elements. The present finite element model also uses the same order of interpolation for the pressure and 
velocity fields, considering the self-stabilization behavior of the CBS algorithm by means of the time step control. 

This paper is organized as follows: In the section 2 the modeling approach is described and the specifically 
closuring assumptions are discussed. In the section 3 the numerical implementation of the turbulence model is presented 
and the stability consideration is explored. At a last part, some illustrative results are presented concerning the flow over 
different forest configurations, where experimental data is compared to the present numerical results. 
 
2. Turbulence modeling 

 
2.1 Basic Equations 
 

Let us consider a multidimensional air flow within and above vegetative canopies, defined for generality in a 3D 
domain. The modeling of canopy turbulent flows considers a rationale based in a double averaging process: In a first 
step all flow quantities are averaged on time using a characteristic time interval, like for free turbulent flows (this 
averaging operator being denoted by a over line bar symbol (.) ). In the second step a spatial averaging is performed 
within a reference volume (this operator being denoted by a bracket symbol ( ). ). Discussions of the use and necessity 
of this formalism are developed in Raupach and Shaw (1982) or Finningan (2000), for instance. 

Applying this double averaging approach to the instantaneous mass and momentum conservation equations for the 
air flow, the set of governing equations can be obtained. The assumptions of incompressibility of the air flow under 
neutral buoyancy conditions and no-waving behavior of canopy elements were considered. The continuity and the 
Navier-Stokes equations for the canopy flows are thus given by: 
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In these equations u  and p are the averaged velocity and pressure fields, ρ and ν denote the density and 

kinematical viscosity of the air and )( uS  is the mean rate of strain tensor given by: 
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The extra terms of Eq. (2), present due to the use of double averaging operations on the momentum conservation 

equation, are the volume averaged Reynolds stress ´´ uu ⊗ and the dispersive flux "" uu ⊗ . These terms denote the 

statistical correlation of fluctuating velocity parts associated to the time average, ´u  and to the space, "u , respectively. 
In the present work the tensor term related to the dispersive flux is neglected, considering the density of the canopy 
elements for some kinds of forest structures it can be taken into account. 

The last term in the Eq. (2), f, accounts for the mechanical interaction between the air flow and the vegetation 
elements by viscous and form drag forces. It can be modeled by: 

 
uuf )( 3xACD−=           (4) 

 
Where CD and A(x3) denote respectively the drag coefficient and plant area density, with x3 coordinated aligned to 

the vertical direction. 
 

2.2. Closuring parameterization  
 
In the framework of first-order turbulence closuring, the Reynolds stress tensor is often modeled by the Boussinesq 

eddy-viscosity assumption, namely 
 

)(2
3
2´´ uSIuu TK ν−=⊗           (5) 

 



Proceedings of ENCIT 2006 -- ABCM, Curitiba, Brazil, Dec. 5-8, 2006 – Paper CIT06-0371 
 
where K represents the kinetic energy of turbulence (which will be combined to compose the apparent pressure) and νT 
is the eddy viscosity. In the present paper a zero-equation model is employed as: 

 
[ ])(:)(2 uSuSmT =ν 1/2          (6) 

 
in which m represents the mixing length of the turbulent process. For homogeneous forest it can modeled simply as: 
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In the above equation h* is the vertical position where the leaf area density is maximum (Amax) and z is the vertical 
distanced of the closest ground surface. The length scale for the canopy region h , is given as  
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where κ=0.44  represents the Karmann constant. 

 
2.3 Boundary conditions  

 
Four types of boundary condition are considered for the atmospheric boundary layer flow simulations. On the ground 
non-slip boundary conditions is imposed for the velocity flow. On the free flow surface, located three times the forest 
height, the free velocity is imposed. For the problems related to a 2D evolution of the boundary layer (forest edge, for 
instance) the inflow condition is composed by a vertical profile of the velocity field, based in a power-law atmospheric 
boundary variation. For the outflow boundary condition homogeneous Neumann conditions for the velocity field and a 
reference value for the pressure are imposed.  
 
3. Numerical methodology 

 
The governing equations presented on the last section are solved by employing a finite element method with an 

equal order interpolation for pressure and velocity fields (linear triangle elements have been selected). A CBS algorithm 
is implemented taking into account the regions with and without forest canopies, always for 2D domains. In this 
methodology the continuity and momentum equations are solved using a splitting strategy, considering an incremental 
time integration algorithm with multiple steps. This approach can assure the stability for pressure and velocity, as well 
as for high local Reynolds number, only by controlling the size of the time step. 

The aim of the CBS algorithm involves two major ideas (e.g. Zienkiewicz and Taylor, 2000, Codina et al., 1998): 
First the momentum equation is re-written along a characteristic path, in order to reduce the spurious effects due to 
Galerkin discretization for high Reynolds number. This gives rise to an additional stabilized term in the formulation on 
streamline direction, equivalent to the streamline-diffusion term. The second feature of this algorithm is to decouple the 
pressure and velocity fields by means of a fractional step algorithm, like in classical splitting-projection schemes 
(Chorin, 1968 and Temann, 1969). It is shown that this last approach allows a stabilization term for the pressure and 
velocity discretization spaces (Codina, 2001). Those two ingredients of the method permit a stable scheme for 
convective-advection treatment and for pressure-velocity discretization. The stabilization parameter now is the time 
step. It can be shown that this scheme has equivalent stabilized properties of other methodologies (Codina and. 
Zienkiewicz, 2002). 

Given the set of variables known in a previous time step t, {un, pn}. The solution {un+1, pn+1} of the conservation 
equations in a time step t + ∆t, is obtained by the following steps: 

 
Step 1: Solving Momentum Equation 
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Step 2: Solving Pressure Field 
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Step 3: Velocity Correction – Divergence-Free Projection  
 
 11 ++ ∇∆−= nnn ptuu  

 
The term f(u) is computed by using Eq. (4). 
Using the Galerkin method for spatial discretization of the equations on the steps 1-3, coupled to the classical finite 

element base functions, a matrix form of the algorithm can be written as set of three symmetrical linear systems for 
each time step. 
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In those equations M and H are the mass and discrete Laplacian matrices given by: 
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Remarks: 
• The linear systems of the steps 1 and 3 involve the mass matrix. In order to enhance the convergence rate of the 

computations, this matrix is lumped in a diagonal form. This is performed only once, at the beginning of the iterative 
computation. 

• The linear system for the pressure correction problem (step 2) is solved by employing the Conjugated Gradient 
Method, preconditioned by partial Cholesky factorization. This matrix is stored by means of a sparse Morse strategy, 
and the preconditioning is also performed only once, when this matrix is firstly computed. 

 
In the present paper the time step is controlled by the following expression: 
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For those two expressions ones considers the characteristic time for the diffusion and convection counterpart of the 

discrete problem, at each element. The viscosity in the element, νe, must take into account the molecular and turbulent 
parts. 

It can be verified that the critical time step proposed by Eq. (9) is compatible with the following relation: 
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where 1c and 2c are constants and h denotes the characteristic length of the element. The above described procedure can 
assure the stability of the scheme, following the analysis of Codina and Zienkiewicz (2002). The present choice of the 
time step value stabilize both the convective and pressure-velocity  problems.  

 
4. Results and discussions 
 

The first test case concerns the 1-D developed boundary layer over and within a homogeneous canopy. This 
problem is used to check the quality of the simulations using the simply first order model for different density canopy 
distributions. It is considered that the forest canopies have the height H. The computational domain for the canopy 
problem is considered 3H height, where a free velocity is imposed. A non slip boundary condition is used on the 
ground. All general characteristics of those forests are resumed in Tab. 1, and the leaf area density of forest sites are 
presented in the Fig. 1. 
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Table 1: General forests characteristics 
 
Forest type Drag Coefficient (CD) Height (H) Leaf Area Index (LAI) Reference 

Amazon Rain Forest 0.25 38 m 4.9 Kru et al (2000) 
Pine Forest 0.21 14 m 2.9 Katul et al (2004) 
Oak Forest 0.1 24 m 2.9 Poggi et al (2004) 

Stika Spruce 0.2 7 m 2.15 Irvine et al (1997) 
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Figure 1. Leaf Area Density:  (a) Amazon Rainforest   (b) Pine Forest   (c) Oak Forest. 
 
 

 

 
 

Figure 2.  Developed boundary layer for Amazon rainforest : Velocity and turbulence profiles. 
 

 
 
The results for developed flow – after the boundary layer development, are presented in Figs. 2 and 3, in which the 

numerical results are compared to the experimental measurements for Amazon and pine forests. The mean horizontal 
velocity profiles for both simulations could reproduce well the experimental data. The turbulence statistics given by the 
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Reynolds Shear stress ( ´ ´u w ) and the vertical velocity variance ( wσ ) are obtained by using the following simply 
parameterizations: 
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All the displayed results are presented by considering dimensionless values, using the velocity scales (u* or uH) 

proposed by the experimental works. The results obtained in the simulations show good agreement with the in situ 
measurements, considering the simplicity of the first order model used in the present paper. In Fig. 4 a complete 
comparison between the in situ experiments and numerical simulations is presented for the mean velocity field as well 
as for the turbulent shear stress. These plots have shown the relative quality of the proposed model. The model 
limitation for the high velocity values is observed in the spread of the data in the upper side of the graphics, mainly for 
the simulations of the shear stress. The main dispersion is encountered in the simulations of lower density canopies 
(oak) over the canopy. 

 

 
 
Figure 3. Developed boundary layer for Pine Forest: Velocity and turbulence profiles. (symbols are experimental 

measurements. Lines are simulations) 
 
 
 

                   
 
 

 
Figure 4.  Comparisons for four dense forests (mean velocity and shear stress). 
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Figure 5. Forest edge test case. 

 
 
 

 
 

Figure 6. Boundary layer development from the forest edge. 
 
 
 

 
Figure 7. Details of the velocity field on the forest edge. 

 
 
 

The second set of results was obtained for a test case concerning the development of boundary layer flow after a 
forest edge, as shown in Fig. 5. The canopy has a height H, and the computation domain is contained in a box with 
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18Hx3H. The velocity field is developed from the beginning of the canopy layer (x = 0) just at a condition with zero 
vertical velocity and an established vertical profile of the wind velocity. The domain is discretized with 2200 triangular 
finite elements and the measured canopy structures is used for the simulations (a(z)). The simulation is performed for 
the uniform plantation of Sitka spruce to verify the development of the air flow within the canopy, near to the forest 
edge. Experimental results are available for this situation. 

 

 
Figure 8. Vertical velocity levels 

 
 
 
On Figures 6-8 the numerical results for the developing flow in the forest edge are visualized. The velocity vectors 

characterized the same qualitative streamlines behavior of the experimental observations of Irvine et al. (1997) and 
Morse et al. (2002). Near the inlet forest edge, the vertical velocity component of the velocity has a great positive value, 
as a consequence of the deceleration of the air flow due to the drag in the vegetation elements. At this region the 
velocity has an angle of some degrees, directing the flow to the top of the canopy, as shown in the pictures. It can be 
observed that the results are overestimated within the canopy, comparing it to the experimental observations. Two 
considerations have to be taken into account: First, the exact leaf area density distribution is only estimated in this 
experimental case. The data for the function a(x) is not available for this experiments - only the integral value (LAI) 
had been effectively measured. The authors proposed an estimative as a conical distribution, which can be explain the 
difference between the results. The second consideration is based in the modeling used for this paper. The simply first 
order model considers a constant length scale within the canopy, and the computation of the turbulence viscosity is 
performed and calibrated only for the developed boundary layer flows. Advanced models have to be used to enhance 
the accuracy of the estimates for the air flow, for inhomogeneous distributions of vegetative layer, in particular to 
describe the flow in near ground regions. 
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